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Les Éditions des Nik’s News s’engagent à ne plus pub-
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Introduction

The last decade has seen the development of new types of signal repre-
sentations, generically known as the wavelet transforms (named after
the well-known article of Alex Grossmann and Jean Morlet [GM84]).
As in Fourier analysis, the wavelet transform consists in decomposing
a given function onto a set of “building blocks”. However, as opposed
to the Fourier transformation (in which the “building blocks” are the
well-known complex exponentials), the wavelet transform uses the di-
lated and translated version of a “mother wavelet” which has conve-
nient properties according to time/frequency localization. As we will
see later, this allows to perform a time/frequency analysis of signals
which is much more relevant than those provided by other decomposi-
tions, e.g. the windowed Fourier transform. In the last few years, the
wavelet analysis has been applied successfully to a wide range of prob-
lems from pure mathematics to engineering (characterization of some
functionnal spaces, study of turbulence, signal processing, . . . ).
This document intends to provide a short introduction to the wavelet
theory. The subjects which are adressed are (in chronological or-
der): the continuous wavelet transform, the dyadic wavelet transform,
the notions of multiresolution analysis and orthogonal multiresolu-
tion analysis (in which orthogonal and non-redundant decompositions
arise). Fast algorithms are presented for the dyadic and the orthogonal
wavelet transforms. In terms of applications we quickly present the
well-known wavelet-based denoising methods and the wavelet maxima
representations.
Obviously, this document does not pretend to be exhaustive. It intends
to provide the beginner with an idea of what the wavelet transforms are

3



and to give pointers to more specialised reading. This is the first ver-
sion of the document, later versions will probably be more exhaustive
(I am currently planing to write a chapter speaking about the connec-
tions between multifractal and wavelet analysis but time is running
against me!).
This document has been written using principaly [JS93, Dau92] and
the recent book by Stéphane Mallat: “A Wavelet Tour of Signal Pro-
cessing” [Mal98], which is very complete (not only on a wavelet point of
view). Some other “specialized” references have been used as well (all
of them can be found in the bibliography).

1 Preliminaries

Definition 1 (L2(R)) L2(R) denotes the space of square integrable func-
tions, i.e.

L2(R) =

�
f=

Z+1
-1

jf(x)j2dx <1
provided the scalar product

< f; g >=

Z+1
-1

f(x)g�(x)dx

and the associated norm
kfk2 =< f; f >

This space (in association with this scalar product) has a Hilbert space
structure (see definition 9, page 64).

Definition 2 (Fourier transform) The Fourier transform1 of a function
f 2 L2(R) is defined as

f̂(�) =

Z+1
-1

f(x)e-i�xdx

and its inverse is given by

f(x) =
1

2�

Z+1
-1

f̂(�)ei�xd�

Many of the results presented in the next sections are dependant on
this definition.

1In general [Weiar], a Fourier transform pair can be defined using two arbitrary
constants A and B such that f̂(�) = A

R+1
-1

f(x)eBi�xdx and f(x) = B
2�A

R+1
-1

f̂(�)e-Bi�xd�.
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Theorem 1 (Poisson sommation formula) For all f; g 2 L2(R), the Pois-
son sommation formula gives the two equalities

+1X
l=-1

f(x- l) =

+1X
k=-1

f̂(2k�)e2i�kx (1)

and
+1X
l=-1

< f; �lg > e
-i�l =

+1X
k=-1

f̂(�+ 2k�)ĝ�(�+ 2k�) (2)

A proof of this result can be found in [HD97].

2 The continuous wavelet transform

This section presents the continuous wavelet transform and dicusses
its basic properties, e.g. time/frequency localization, inversion, re-
dundancy, . . . The connections between the continuous transform and
other “discrete” wavelet transforms (dyadic or orthogonal wavelet trans-
forms) will be emphasized in the next sections.

2.1 Definition and properties

Definition 3 (Continuous wavelet transform) The continuous wavelet
transform of f 2 L2(R) is defined as [GM84, Mal98, Sta92]

Wf(a; b) =< f; a;b >;  a;b(x) =
1p
a
 

�
x - b

a

�
(3)

where a > 02 and b are respectively the scale and the translation pa-
rameter.

 2 L2(R) is called a wavelet function. This transformation is linear
and invariant according to shift and scale. A direct consequence of the
Parseval theorem3 is

Wf(a; b) =
1

2�
< f̂;  ̂a;b >;  ̂a;b(�) =

p
ae-i�b ̂(a�) (4)

2Other authors ([Dau92, JS93] for example) define the transform for all a 6= 0. It
is therefore necessary to introduce an absolute value in equation (3).

3< f; g >= A < f̂; ĝ >, the value of A depends on the definition of the Fourier
transform. Here, A = 1

2�
.

5



Equations (3) and (4) imply that the wavelet coefficients contain some
information about f coming from both the time and the frequency do-
mains. The wavelet transform is therefore a time/frequency represen-
tation (the proper naming is time/scale representation) as the win-
dowed Fourier transform introduced by Gabor [Gab46, FS97], or the
Wigner-Ville distribution [Vil48, HBB92, Mal98].
Unfortunately, this type of representations is subject to a limitation
due to the Weyl-Heisenberg undeterminacy relation4 (this is not di-
rectly true for the Wigner-Ville distribution but its practical use in-
volves an averaging which leads to a loss of time-frequency resolu-
tion [Mal98]). In the rest of this document, the wavelet function
is considered to be real (complex wavelets are studied in details in
[Mal98]).

2.2 The Weyl-Heisenberg undeterminacy relation

Theorem 2 (Weyl-Heisenberg undeterminacy relation) Given a func-
tion f 2 L2(R) such that kfk2 = 1, the Weyl-Heisenberg relation indicates
that �Z+1

-1

(x - x̄)2jf(x)j2dx

�
| {z }

�2x

�Z+1
-1

(�- �̄)2jf̂(�)j2d�

�
| {z }

�2
�

� A (5)

Where

� x̄ =
R+1
-1
xjf(x)j2dx ;

� �̄ =
R+1
-1
�jf(�)j2d�.

Proofs of this theorem can (notably) be found in [BH96, Mal98] and
in almost every books about quantum physics. The value of A also
depends on the definition of the Fourier transform, here A = 1

4
. Op-

timizing equation (5) using techniques based on the calculus of varia-
tions (see [HD97] for an introduction) shows that Gauss functions of
the form K(a)e-ax

2

satisfy the optimum. A direct consequence of the
theorem is that a function cannot be simultaneously well localized in
both the time and the frequency domain, and it is obviously true for
the wavelet function in equation (3).
By considering the time-frequency spread of  a;b, it follows that most of
the information contained in Wf(a; b) comes from the intervals [b+ax̄-

a�x; b+ax̄+a�x] (time domain) and [(�̄-��)=a; (�̄+��)=a] (frequency do-
main) [JS93, Mal98]. These intervals define time-frequency windows,

4Also known as the Weyl-Heisenberg uncertainty principle. Here, we use the vo-
cabulary introduced by E. Cornell [CW98].
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known as Heisenberg boxes, whose areas depend on the translation
and scale parameters. From Weyl-Heisenberg relation, the area of a
given box has a lower bound: 4�x�� � 2. However, an interesting prop-
erty of the wavelet transform is that the dimensions of a given win-
dow can be adapted according to the “subject” of interest (as opposite
to the windowed Fourier transform). Typically, it consists in using a
“good” time resolution for studying the high frequencies and a “good”
frequency resolution for the low frequencies.

2.3 Inversion of the continuous wavelet transform

Theorem 3 (Calderón identity) If the wavelet  2 L2(R) satisfies the
admissibility condition

C =

Z+1
0

j ̂(�)j2

�
<1

then every function f 2 L2(R) is such that

f(x) =
1

C 

Z+1
0

Z+1
-1

Wf(a; b) a;b(x)
dbda

a2

Proofs of this result can (notably) be found in [Mal98, Dau92]. This
identity has been rediscovered in [GM84] and was known in harmonic
analysis since 1964. The admissibily condition requires that  ̂(0) =R+1
-1
 (x)dx = 0 which means that the wavelet must be an oscillating

function5. Note that a given function can also be reconstructed from
its wavelet transform using another wavelet [Sta92] �(x) ifZ+1

0

�̂(�) ̂�(�)
�

d� <1
the inversion formula is then given by

f(x) =

Z+1
0

Z+1
-1

W(a; b)�a;b(x)
dbda

a2

2.4 Reproducing kernel

Now by inserting the Calderón identity in equation (3), we end up with

Wf(a0; b0) =
1

C 

Z+1
0

Z+1
-1

Wf(a; b)�(a; a0; b; b0)
dbda

a2
(6)

5Or the null function which is limited in interest.
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where �(a; a0; b; b0) =<  a;b;  a0;b0 > is called a reproducing kernel6

[Mal98]. The modulus of the reproducing kernel measures the cor-
relation between the two wavelets  a;b and  a0;b0 and illustrates the
redundancy of the continuous wavelet transform. Note that any func-
tion �(a; b) is the wavelet transform of some function f 2 L2(R) if and
only if it satisfies equation (6).

2.5 Scaling function

When the wavelet transform is known only for a < a0, f cannot be
recovered from its wavelet coefficients. Basically, the Calderón identity
is broken into two parts

f(x) =
1

C 

Za0
0

Z+1
-1

Wf(a; b) a;b(x)
dbda

a2
+
1

C 

Z+1
a0

Z+1
-1

Wf(a; b) a;b(x)
dbda

a2

The role of the scaling function � is to provide the information presents
in the second term of the previous equation so that it becomes equal
to Z+1

-1

Lf(a0; b)�a0;b(x)db; Lf(a; b) =< f;�a;b >

By using the fact that Wf(a; b) = f
  ̄a(b), Lf(a; b) = f
 �̄a(b) and thatZ+1
-1

Wf(a; b) a;b(x)db = Wf(a; :)
  a(x);Z+1
-1

Lf(a; b)�a;b(x)db = Lf(a; :)
 �a(x)

we end up with

f
 �̄a0 
 �a0 = f
 	(x); 	(x) =
Z+1
a0

 ̄a 
 a(x)da
a2

This leads, via the convolution theorem, to the following constraint on
j�̂(�)j2

j�̂(�)j2 =

Z+1
1

j ̂(a�)j2
da

a2

The phase of �̂(�) can be arbitrarily chosen [Mal98].

2.6 Examples of wavelets

This subsection is obviously not exhaustive and gives only two exam-
ples of wavelet given in [Sta92].

6If the original function is reconstructed using another wavelet, the reproducing
kernel becomes �(a; a0; b; b0) =< �a;b;  a0;b0 >.
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Morlet’s wavelet

The Morlet’s wavelets is a complex wavelet whose real part is given by

<f g(x) =
1p
2�
e-

x2

2 cos 2��0x

and imaginary part by

=f g(x) =
1p
2�
e-

x2

2 sin 2��0x

�0 is a constant term. For this wavelet, the admissibility condition is
not satisfied but if �0 is sufficiently large it becomes “pseudo-admissible”
[Sta92]. See figure 1 (a) & (b) (� = 0:4).

Mexican hat

The mexican hat is defined as the second derivative of a gaussian, its
expression is therefore given by

 (x) = (1- x2)e-
x2

2

The well-known property of the Fourier transform: df(n)

dxn
(x) , (i�)nf̂(�)

implies directly that  ̂(0) =
R+1
-1
 (x)dx = 0 and the fact that the first-

order moment of a Gauss function is finite prooves that this wavelet is
admissible. See figure 1 (c).

Figure 1 Examples of wavelets.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-4 -2 0 2 4
Partie reelle (Morlet)

nu=0.4

(a) Morlet (real
part).

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-4 -2 0 2 4
Partie imaginaire (Morlet)

nu=0.4

(b) Morlet
(im. part).

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4
Chapeau mexicain

(c) Mexican hat.

9



3 Dyadic wavelet transform

A dyadic wavelet transform is obtained by discretizing the scale pa-
rameter a according to the dyadic sequence f2jgj2Z. In order to preserve
the translation invariance property of the continuous wavelet trans-
form the translation parameter is not discretized. Under particular
conditions, the dyadic wavelet coefficients can be computed using a
fast algorithm, known as an algorithme à trous.

3.1 Definition and inversion formula

Definition 4 (Dyadic wavelet transform) The dyadic wavelet transform
of f 2 L2(R) is defined as

Wf(2
j; b) =< f; 2j;b >;  2j;b(x) =

1p
2j
 

�
x - b

2j

�
(7)

If the frequency plane is completly covered by dilated dyadic wavelets,
then the dyadic wavelet transform defines a complete and stable7 rep-
resentation. The following theorem relates the dyadic wavelet trans-
form to the frame theory [Mal98, Dau90, Dau92] and gives an inversion
formula.

Theorem 4 If there exists two constants A;B 2 R 2+� such that

8� 2 R; A �
+1X
j=-1

j ̂(2j�)j2 � B

then

Akfk2 �
+1X
j=-1

1

2j
kWf(2

j; b)k2 � Bkfk2

Moreover, if � satisfies

8� 2 R+ ;

+1X
j=-1

 ̂�(2j�)�̂(2j�) = 1 (8)

7The terms “complete” and “stable” should be understood in a frame theory con-
text [DS52, Dau90, Mal98]. Roughly, a sequence f�ngn2� is said to be a frame of
an Hilbert space H if there exist A;B 2 R

2+� so that 8f 2 H; Akfk2 �
P

n2� j <

f; �n > j2 � Bkfk2. This is a necessary and sufficient condition so that the operator
Uf[n] =< f; �n > is invertible on its image with a bounded inverse. If A = B the frame
is said to be tight and if A = B = 1 the frame is an orthogonal basis of H [Dau90]. See
(notably) [Mal98, Dau90, Dau92] for more details.
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then

f(x) =

+1X
j=-1

Z+1
-1

Wf(2
j; b)�2j;b(x)db (9)

A proof of this theorem can be found in [Mal98, Dau90]. � denotes the
reconstruction wavelet.

3.2 Reproducing kernel

As in the continuous case, the dyadic wavelet transform is a redun-
dant representation whose redundancy is illustrated by a reproducing
kernel equation. By inserting equation (7) in equation (9), we end up
with

W(2j0; b0) =

+1X
j=-1

Z+1
-1

Wf(2
j; b)�(j; j0; b; b0)db (10)

where �(j; j0; b; b0) =< �2j;b;  2j0 ;b0 >. Another equivalent way8 of see-
ing this reproducing kernel [MZ92] consists in using the fact that
Wf(2

j; b) = f 
  ̄�
2j
(b) and that f(x) =

P
jWf(2

j; :) 
 �2j(x). Inserting the
last expression of f(x) in the one of Wf(2

j0; b0) gives

Wf(2
j0; b0) =

+1X
j=-1

Wf(2
j; :)
 � 0

2j;2j0
(b0); �

0
2j;2j0

(b) = �2j 
  ̄�
2j0

(b) (11)

3.3 Dyadic wavelets and algorithme à trous

If the wavelets and scaling functions are properly designed, the dyadic
wavelet transform can be computed via a fast algorithm based on filter
banks [Mal98, MZ92, RD92, She92], known as an algorithme à trous.
It requires that there exists two discrete filters h and g with

P
k hk =

p
2

so that the scaling function � and the wavelet  respectively satisfy

�̂(�) = ĥ(�=2)�̂(�=2) (12)

and
 ̂(�) = ĝ(�=2)�̂(�=2) (13)

where ĥ(�) = 1p
2

P
k hke

-i�k is the Fourier transform of the distribution
1p
2

P
k hkÆk (same for ĝ(�)). If Lf(2j; b) =< f;�2j;b > is known, we can

calculate

Wf(2
j+1; b) =< f; 2j+1;b > and Lf(2j+1; b) =< f;�2j+1;b >

8This holds for the continuous wavelet transform as well.
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by using only the discrete filters h and g. Since Lf(2j+1; b) = f
 �̄2j+1(b),
we have9 (from equation (12))

Lf(2j+1; b) , f̂(�)�̂�
2j+1(�)

= ĥ�2j f̂(�)�̂
�
2j(�), h̄2j 
 Lf(2j; :)(b) (14)

The same kind of argument gives

Wf(2
j+1; b) = ḡ2j 
 Lf(2j; :)(b) (15)

h2j (resp. g2j) is obtained from h (resp. g) by inserting 2j - 1 zeros
between the samples of h (resp. g). The pair ', � (respectively the
scaling function and wavelet) used for reconstructing the signal should
as well satisfy two similar equations as (12) and (13) with filters h̃ and
g̃ instead of h and g. Obviously, we must be able to recover Lf(2j; b)
from Lf(2j+1; b) and Wf(2

j+1; b). This is done via the following formula

Lf(2j; b) = g̃2j 
Wf(2
j+1; :)(b) + h̃2j 
 Lf(2j+1; :)(b) (16)

Algorithm 2 illustrates the working of the algorithm. Equation (15) is
equivalent to

Lf(2j; b) = (h̄2j 
 h̃2j + ḡ2j 
 g̃2j)
 Lf(2j; :)(b)
Therefore, the required perfect reconstruction introduces the constraint

ĥ�(�)^̃h(�) + ĝ�(�)^̃g(�) = 1; 8� 2 [-�; �]

which is equivalent to condition (8) (proof in [Mal98]).

Figure 2 Algorithme à trous.
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j; b)

��
��
��
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-

- -

- -

- -

@
@R

�
��

- -

-

�1
2

ḡ2j
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ḡ2j-1

h̄2j-1

h̃2j+1

g̃2j+1

j+1

j+2

�j+2

�j+1

�j

j

�j+1

�j-1

9The convolution operators in equations (14), (15) and (16) should be understood
in a distribution theory context. See [HD97].
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3.4 Practical considerations

In practical cases, i.e. discrete signals of finite duration, the convolu-
tions in equations (14), (15) and (16) are replaced by circular convolu-
tions. Since the scalar product of the discrete sequence with �2log2 N;k

is constant [Mal98] (N is the length of the signal), the scale only goes
from 20 = 1 to 2log2N . Most of the time, the samples of the discrete
input sequence are considered as the average of a function f weighted
by �(x - k) and give the first approximation required for starting the
algorithm. The complexity of the algorithm is in O(N log2N). Figure 3
shows the dyadic wavelet transform of a signal computed by means of
the quadratic spline wavelet given in [MZ92].

4 Multiresolution analysis of L2(R )

The multiresolution analysis introduced by Stéphane Mallat in 1989
[Mal89] provides a theoretical context in which non redundant and
orthogonal wavelet decompositions arise. However, the definition of a
multiresolution analysis does not require any constraint of orthogonal-
ity. In this section we focus on the basic properties of a multiresolution
analysis and their implications on the pair wavelet/scaling function.

4.1 Definition

Definition 5 (Multiresolution analysis) A multiresolution analysis is
a set of closed subspaces Vj of L2(R), which satisfies the following six
properties10 [Mal89, JS93, BH96]

1. Vj � Vj+1; 8j.
2. v(x) 2 V0, v(x - k) 2 V0; 8k 2 Z.

3. v(x) 2 Vj, v(2x) 2 Vj+1; 8j 2 Z.

4. limj!-1Vj =
T+1

j=-1Vj = f0g.

5. limj!+1Vj =
S+1

j=-1Vj = L
2(R).

6. There exists a scaling function � 2 L2(R) such that f�k�gk2Z is a
Riesz basis of V0.

10Some authors [Mal98, Dau92] use Vj+1 � Vj and f(x) 2 Vj , f(x=2) 2 Vj+1 for
(respectively) properties 1 and 3.
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Figure 3 Beginning of a dyadic wavelet transform.
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Property 1 (causality property) means that an approximation in V j con-
tains all the information for computing an approximation at a coarser
resolution. Property 2 indicates that V0 is invariant under integer
translations. Property 3 says that the null fonction is the only com-
mon object to all the subspaces Vj, i.e. we lose all the details about f
as j goes to -1. Property 4 means that every functions of L2(R) can be
approximated to an arbitrary precision. The definition of a Riesz basis
(property 6) is available page 64. Properties 3 and 6 directly imply that
the family f�j;kgk2Z (now �j;k(x) stands for

p
2j�(2jx- k)) forms a Riesz

basis of Vj.
Simple examples of multiresolution analysis are: the piecewise con-
stant approximations (related to the Haar wavelet), the shannon ap-
proximations (related to the Shannon wavelet) and the spline approx-
imations, the two first examples defines some orthogonal multiresolu-
tions while the third defines a non-orthogonal one, more details are
avalaible in [Mal98, JS93].

4.2 Dilation equation and basic consequences

Theorem 5 (Dilation equation) Let � 2 L2(R) be the scaling function of
a multiresolution analysis, then [JS93, Dau92]

9fhkgk2Z=�(x) =
p
2

+1X
k=-1

hk�(2x- k) (17)

This theorem follows directly from properties 1 and 6: as a function of
V0 (property 6) and because V0 � V1 (property 1), � can be expressed
as a linear combination of the basis function of V1.
Equation (17) is known as a dilation equation [Str94] or a scaling
equation [Mal98] and plays a fundamental role in the orthogonal dyadic
wavelet theory. Integrating equation (17) on both sides implies thatP
k hk =

p
2.

Introducing the dilation equation in the Fourier transform of � leads
to

�̂(�) = ĥ(�=2)�̂(�=2) (18)

where ĥ(�) = 1p
2

P
k hke

-i�k denotes the Fourier transform (2�-periodic)
of the distribution 1p

2

P
k hkÆk. Equation (18) can be used recursively

and gives (at least formally)

�̂(�) =

1Y
k=1

ĥ(�=2k)
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This product can be interpreted as an infinite cascade of convolutions
of the distribution 1p

2

P
k hkÆk by itself, its convergence properties are

(notably) studied in [Dau88].

4.3 Complementary subspaces

Let Wj denotes the subspace complementing Vj in Wj+1 i.e.

Vj+1 = Vj�Wj

where � denotes the direct sum operator. As a consequence of prop-
erty 5, we have

L+1

j=-1Wj = L
2(R).

Definition 6 (Wavelet function) In a multiresolution context, a func-
tion  is said to be a wavelet function if the family f�k gk2Z is a Riesz
basis of the complementary subspace W0 [JS93].

As a function of V1, the wavelets also obey a dilation equation

 (x) =
p
2

+1X
k=-1

gk�(2x - k)

which leads to
 ̂(�) = ĝ(�=2)�̂(�=2) (19)

and (as in the case of the scaling function) to an infinite product of the
form

 ̂(�) = ĝ(�=2)

+1Y
k=2

ĥ(�=2k)

The family of functions f j;kgj;k2Z2 forms a Riesz basis of L2(R) [JS93,
Mal98]. As a consequence, every functions of L2(R) can be written as

f(x) =

+1X
j=-1

+1X
k=-1

�j;k j;k(x) (20)

This equation can be seen as an inverse wavelet transform where the
scale and the translation parameters have been discretized.

5 Orthogonal multiresolution analysis

5.1 Definition and perfect reconstruction constraint

Definition 7 (Orthogonal multiresolution analysis) An orthogonal mul-
tiresolution analysis is a multiresolution analysis such that for all j 2 Z,
Wj is the orthogonal complement of Vj in Vj+1 [JS93, Dau92].
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A sufficient condition for a multiresolution to be orthogonal is given
by [JS93]

V0 ?W0 i.e. < �; �k >= 0; 8k 2 Z (21)

A consequence of this definition is the existence of an unique scaling
function � so that the family f�k�gk2Z forms an orthogonal basis of
V0 [Mal89], i.e.

< �; �k� >= Æ0;k; 8k 2 Z (22)

Now, the families f�j;kgk2Z, f j;kgk2Z and f j;kgj;k2Z2 form orthogonal basis
of (respectively) Vj, Wj and L2(R) (proof in [Mal98]). Hence, in this
context, equation (20) can be written as

f(x) =

+1X
j=-1

+1X
k=-1

< f; j;k >  j;k(x)

By using the Poisson formula (equation (2)), equation (22) is equivalent
to

F(�) =

+1X
k=-1

j�̂(�+ 2k�)j2 = 1 (23)

Since (from equation (18) and from the fact that both F(�) and ĥ(�) are
2�-periodic)

F(2�) =

+1X
k=-1

j�̂(2�+ 2k�)j2

=

+1X
k=-1

jĥ(�+ k�)j2j�̂(�+ k�)j2

=

+1X
k=-1

jĥ(�+ 2k�)j2j�̂(�+ 2k�)j2

+

+1X
k=-1

jĥ(�+ �+ k�)j2j�̂(�+ �+ k�)j2

= jĥ(�)j2F(�) + jĥ(�+ �)j2F(�+ �)

we end up with the following theorem [JS93, Mal98, Dau88].

Theorem 6 (Perfect reconstruction) Let � 2 L2(R) be the scaling func-
tion of an orthogonal multiresolution, then ĥ(�) satisfies11

jĥ(�)j2 + jĥ(�+ �)j2 = 1 (24)

11Note that the right hand side depends on the definition of ĥ(�). Here: ĥ(�) =
1p
2

P
k hke

-i�k. Other authors [Dau88, Mal98] end up with the right hand side equals
to 2.
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This constraint is fundamental for the design of orthogonal wavelets
and connects wavelets to the conjuguate quadrature filters (tree-structured
subband coders with exact reconstruction [SB86]) theory12 [Dau88,
Mal98, CDF92]. Note that equation (24) is a sufficient condition so
that � 2 L2(R) [CDF92].

5.2 Relation between ĥ(�) and ĝ(�)

Now consider the sufficient condition for a multiresolution to be or-
thogonal (equation (21)), again from Poisson formula it is equivalent
to

G(�) =

+1X
k=-1

�̂(�+ 2k�) ̂�(�+ 2k�) = 0

which leads to (from equations (18), (19) and (23))

G(2�) =

+1X
k=-1

�̂(2�+ 2k�) ̂�(2�+ 2k�)

=

+1X
k=-1

ĥ(�+ k�)ĝ�(�+ k�)j�̂(�+ k�)j2

=

+1X
k=-1

ĥ(�+ 2k�)ĝ�(�+ 2k�)j�̂(�+ 2k�)j2

+

+1X
k=-1

ĥ(�+ �+ 2k�)ĝ�(�+ �+ 2k�)j�̂(�+ �+ 2k�)j2

= ĥ(�)ĝ�(�) + ĥ(�+ �)ĝ�(�+ �) = 0

This implies the following relation [JS93]

ĝ(�) = �(�)ĥ�(�+ �)

where �(�) is a 2�-periodic function such that �(�) = -�(� + �). Now,
from Parseval theorem, equation (22) can be written as

1

2�

Z+1
-1

jĥ(�=2)j2j�̂(�=2)j2e-i�kdx = Æ0;k; 8k 2 Z (25)

Since

<  ; �k > =
1

2�

Z+1
-1

j ̂(�)j2e-i�kd�

12For every orthogonal bases of compactly supported wavelets, there exists a
pair of discrete filters which defines a subband coder allowing perfect reconstruc-
tion [CDF92] (the opposite is not generally true).
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=

Z+1
-1

jĝ(�=2)j2j�̂(�=2)j2e-i�kd�

=

Z+1
-1

j�(�=2)j2jĥ(�=2+ �)j2j�̂(�=2)j2e-i�kd�

=

Z+1
-1

j�(�=2)j2jĥ(�=2)j2j�̂(�=2)j2e-i�kd�

the orthogonality of the wavelet is implied by the orthogonality of the
scaling function if j�(�)j2 = 1. We then impose the following constraint:
if the scaling function has a compact support, i.e. ĥ(�) is a trigonomet-
ric polynomial, the wavelet must have a compact support. This con-
straint requires that �(�) is a trigonometric polynomial as well. The
only trigonometric polynomials which have these two properties are of
the form

�(�) = Ke-i(2k+1)�

with jKj = 1. Choosing K = �1 implies that if the coefficients fhkgk2Z are
real, then the coefficients fgkgk2Z are also real. The “classical” choice
[JS93, Dau88] is �(�) = -e-i� and leads to

ĝ(�) = -e-i�ĥ�(�+ �) (26)

= -e-i�
+1X
-1

h�ke
i(�+�)k

= -

+1X
k=-1

(-1)kh�ke
-i�(1-k)

=

1X
l=-1

(-1)lh�1-le
-i�l

hence
gk = (-1)kh�1-k (27)

Other authors (notably) [Mal98] choose �(�) = e-i� and then end up
with gk = (-1)1-kh�1-k instead of equation (27).

5.3 Extension: biorthogonal multiresolution analysis

The notion of biorthogonal multiresolution analysis [CDF92, JS93] ge-
neralizes the idea of multiresolution analysis by using different scaling
function/wavelet pairs for respectively the decomposition and the re-
construction of the signal. The idea consists in defining two ladders of
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closed subspaces13

: : : � V-j � : : : � V-1 � V0 � V1 � : : : � Vj � : : :

and
: : : � Ṽ-j � : : : � Ṽ-1 � Ṽ0 � Ṽ1 � : : : � Ṽj � : : :

such that they respectively lead to a multiresolution analysis and a
dual multiresolution analysis. Moreover, it is required that

W̃j ? Vj and Wj ? Ṽj
so that f j;kgj;k2Z2 and f ̃j;kgj;k2Z2 define two dual Riesz basis of L2(R). By
mimicing the orthogonal case, it is possible to derive conditions on the
four filters h, g, h̃, g̃ such that they lead to a perfect reconstruction
subband coding scheme (with different analysis and synthesis filters).
For more precisions the reader is sent to (notably) [CDF92, Mal98].
Finally, every function f 2 L2(R) can be expressed as [CDF92]

f(x) =

+1X
j=-1

+1X
k=-1

< f; j;k >  ̃j;k(x) =

+1X
j=-1

+1X
k=-1

< f;  ̃j;k >  j;k(x)

which illustrates the fact that the role of the two basis can be inter-
changed. The interest of building biorthogonal multiresolution anal-
ysis comes from the fact that more freedom is allowed in the design
of the wavelets/filters and that it becomes possible to create symetric
wavelets.

6 Orthogonal wavelets and fast algorithm

6.1 Fast orthogonal wavelet transform

Now let �j;k =< f;�j;k >= Lf(2-j; 2-jk) and j;k =< f; j;k >= Wf(2
-j; 2-jk).

Generalizing the scaling equation (17) gives

�j;k(x) =

+1X
l=-1

hl�j+1;2k+l(x)

=

+1X
m=-1

hm-2k�j+1;m

13As in the simple multiresolution case some authors ([CDF92] notably) are using
: : : � Vj � Vj+1 � : : : and : : : � Ṽj � Ṽj+1 � : : : instead of the previous definition.
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Putting this last equation in the expression of � j;k leads to

�j;k =

+1X
l=-1

hl-2k < f;�j+1;l >

=

+1X
l=-1

h̄2k-l�j+1;l = h̄
 �j+1[2k] (28)

The same kind of arguments gives

j;k = ḡ
 �j+1[2k] (29)

Equations (28) and (29) are discrete convolutions followed by a down-
sampling operation. We come back to the �j+1;k from the �j;k and the
j;k by inserting

fj+1(x) =

+1X
l=-1

�j;l�j;l(x)

| {z }
2Vj

+

+1X
l=-1

j;l j;l(x)

| {z }
2Wj

in �j+1;k =< f;�j+1;k >=< fj+1; �j+1;k >. Hence (and from the orthogonal-
ity of the scaling function),

�j+1;k =

+1X
l=-1

�j;l

+1X
m=-1

hm-2l < �j+1;m; �j+1;k >

+

+1X
l=-1

j;l

+1X
m=-1

gm-2l < �j+1;m; �j+1;k > (30)

=

+1X
l=-1

�j;l

+1X
m=-1

hm-2lÆk;m +

+1X
l=-1

j;l

+1X
m=-1

gm-2lÆk;m

=

+1X
l=-1

�j;lhk-2l +

+1X
l=-1

j;lgk-2l (31)

The first and second terms of this last equation are discrete convolu-
tions preceded by an upsampling operation (insert one zero between
every sample). See algorithm 4.
Equations (28), (29) and (31) define a perfect reconstruction decimated

filter banks (perfect reconstruction subband coder). If we note �̂ j(�) =P
k �j;ke

-i�k the discrete Fourier transform of the sequence f� j;kgk2Z (same
for ̂j(�)) we have: �̂j(�) = ĥ�(�=2)�̂j+1(�=2), ̂j(�) = ĝ�(�=2)�̂j+1(�=2) and
�̂j+1(�) = ĥ(�)�̂j(2�) + ĝ(�)̂j(2�). Therefore,

�̂j+1(�) = (ĥ(�)ĥ�(�) + ĝ(�)ĝ�(�))�̂j+1(�)
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Figure 4 Fast decimated filter bank algorithm.
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The perfect reconstruction constraint is then given by ĥ(�)ĥ�(�)+ĝ(�)ĝ�(�) =
1 or in “Z-transform” notation

H(ei�)H(e-i�) +G(ei�)G(e-i�) = 1

this condition is equivalent to equation (24), using the expression of
ĝ(�) derived in x5.2, and (roughly) to the condition derived in [SB86].

6.2 Practical considerations

There exists different ways of modifying the fast wavelet transform al-
gorithm for dealing with practical signals, i.e. sampled signals of finite
duration. Most of the time, (as in the algorithme à trous case), the
samples are interpreted such that they gives �0;k. Note that the com-
plexity of the algorithm is in O(log2N) (faster than the fast Fourier
transform—O(N log2N)).

6.2.1 Zero padding

The most intuitive way of dealing with the border problem consists
in assuming that the function vanishes outside the sampling interval
i.e. 2 L2([0;N]). The fast wavelet transform algorithm is therefore ap-
plied without modification. However, the signal is interpreted as if it
was discontinuous at x = 0 and x = N: large coefficients are created
in the neighbourhood of this points and significant errors may appear
during the reconstruction process.

6.2.2 Periodic wavelets

A better solution consists in using a proper orthogonal basis of L2([0;N]).
For example, an orthogonal basis of L2([0;N]) can be contructed by pe-
riodizing an orthogonal wavelet basis of L2(R). By using the periodic
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extension of a function f 2 L2([0;N]) i.e.

f(�)(x) =

1X
k=-1

f(x+ kN)

it can be shown14 [Mal98] that the family

f 
(�)

j;k gj;k2Z2;  
(�)

j;k (x) =
p
2j

+1X
l=-1

 (2jx - k + 2jlN)

forms an orthogonal basis of L2([0;N]) such that

<  
(�)

j;k ;  
(�)

j 0;k 0 >L2([0;N])= Æj;j 0Æk;k 0

and

f(x) =

+1X
j=-1

+1X
k=-1

< f; 
(�)

j;k >L2([0;N])  
(�)

j;k (x)

This is similar to consider a wavelet decomposition on a torus instead
on the the real line [JS93] and the main modification is to replace
the convolution operators in equations (28), (29) and (31) by circular
convolutions. However, the problem of creating large coefficients in the
neighbourhood of 0 and N is not avoided since there is no garantee that
f(0) = f(N).

6.2.3 Boundary wavelets

Using boundary wavelets avoids to create large wavelet coefficients at
the border. Basically, it consists in using modified wavelets func-
tions, which have as many vanishing moments as the original, for
processing the borders. For a proper presentation, the reader is sent
to [CDJV92, CDV93, Mal98].

Note that folded wavelets are usable if the corresponding basis of L2(R)
is constructed using symetric or antisymetric wavelets. This cannot
occur in the one-dimensional orthogonal case, but can happen for
biorthogonal wavelets. This solution preserves the continuity at the
border but acts as if the signal had a discontinuous first-order deriva-
tive in the neighbourhood of 0 and N.

14The proof is based on using the fact that f(x) = f(�)(x); 8x 2 [0;N]; f 2 L2([0;N])

and on periodizing the decomposition
P

j

P
k < f; j;k >  j;k(x).
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6.3 Examples of orthogonal wavelets

This subsection gives some important properties that a wavelet func-
tion may have (this list has been taken from [JS93]) and presents a few
families of orthogonal wavelet. Pointers to articles in which biorthogo-
nal wavelets are constructed are also given.

6.3.1 Properties of a wavelet function

Orthogonality. The orthogonality is convenient to have in many sit-
uations. First, it directly links the L2-norm of a function to a norm on
its wavelet coefficients. Second, the fast wavelet transform is a unitary
transformation (W-1 =Wy) which means that the condition number of
the transformation (kWkkW-1k) is equal to 1 (optimal case), i.e. stable
numerical computations are possible. Moreover, if the multiresolution
is orthogonal the projection operators onto the different subspaces (V j,
Wj) yield optimal approximations in the L2 sense.

Compact support. If the wavelet has a compact support the filter h
and g have a finite impulse response. Obviously, this is convenient for
implementing the fast wavelet transform. However, if the wavelet does
not have a compact support, a fast decay is required so that h and g
can be reasonably approximated using FIR filters.

Rational coefficients. For efficient computations, it can be inter-
esting that the coefficients of h and g are rational or dyadic rational.
Binary shifts are much faster than floating point operations.

Symmetry. If the scaling function and wavelet are symmetric, the
filters h and g have generalized linear phase. The absence of this prop-
erty can lead to phase distortion.

Regularity. As pointed in the works of Yves Meyer [Mey90] and David
Donoho [Don91] the regularity of the multiresolution analysis is crucial
for many applications such as data compression, statistical estimation,
. . . In the biorthogonal case, the regularity of the primary multiresolu-
tion is more important than the regularity of the dual one [JS93].

Number of vanishing moments. The number of vanishing moments
is connected to the regularity of the wavelet and vice versa [Mey90].
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Analytic expressions. In some case, it can be useful to have analytic
expressions for the scaling function and wavelet.

Interpolation. If the scaling function satisfies

�(k) = Æk; k 2 Z

then the computation of the first scaling coefficients (required for start-
ing the fast wavelet transform) is trivial and the assumption discussed
in x6.2 is valid.

Obviously, a given multiresolution cannot satisfies all these proper-
ties (e.g. orthogonality, compact support and symmetry are exclusive
properties in one dimension except for the Haar wavelet) and it is nec-
essary to make a trade-off between them.

6.3.2 Some families of orthogonal wavelets

The Haar transform. The Haar transform has been invented in 1910,
long before the invention of the terms “wavelet” and “multiresolution”.
Some books about image processing present it as a curiosity [GW92].
The Haar transform corresponds to an orthogonal multiresolution, as-
sociated with the following scaling function and wavelet

�(x) = �[0;1](x);  (x) = �[0;1=2](x) - �[1=2;1](x)

The discrete filter h is then equal to f1; 1g. However, the Haar transform
is not very used in practice because the analysing functions are too
discontinuous. Note that the Haar wavelet is a particular case of a
Daubechies wavelet for N = 1.

The Shannon wavelet. The Shannon wavelet is constructed from the
Shannon multiresolution approximations which approximates func-
tions by their restrictions to low frequency intervals. The scaling func-
tion is then a cardinal sine and the wavelet is equal to [JS93]

 (x) =
sin 2�x- sin�x

�x

This wavelet is C1 but it has a very slow time decay which makes it
not suitable for practical purpose.
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Meyer and Battle-Lemarié. A more interesting example is given by
the Meyer wavelet and scaling function [Mey90] which are C1 and have
faster than polynomial decay (this makes them more suitable for prac-
tical purpose according to the compact support property). � and  are
respectively symmetric around 0 and 1

2
and  as an infinite number of

vanishing moments (see [Mey90] for more details). The Battle-Lemarié
wavelets are created by orthogonalizing B-spline functions and have
exponential decay. A Battle-Lemarié wavelet with N vanishing mo-
ments is a piecewise polynomial of degree N - 1 belonging to CN-2.
See [Bat87, Lem88, Mey90, Mal98].

Daubechies wavelets. The first non-trivial compactly supported and
orthogonal wavelet basis have been constructed by Ingrid Daubechies
[Dau88]. A Daubechies scaling function/wavelet pair of order M satis-
fies the two following dilation equations

�(x) =
p
2

2M-1X
k=0

hk�(2x - k)

and

 (x) =
p
2

1X
k=-2M+2

gk�(2x - k)

The coefficients fhkg (the fgkg are then given by (27)) are determined by
solving the following 2M equations

1

2

2M-1X
l=0

hlhl-2k = Æk; k = 0; : : : ;M- 1

and
2M-1X
l=0

(-1)l+1lkhl = 0; k = 0; : : : ;M- 1

The first set of equations is a reformulation of equation (24) via the
Wiener-Kintchine theorem15. The second set of equations expresses
the fact that  must have M vanishing moments, i.e.Z+1

-1

xk (x)dx = 0; k = 0; : : : ;M- 1

The resolution of this system of equations is done by finding a trigono-
metric polynomial ĥ(�) satisfying equation (24) and having a root of

15For discrete-time signals: F f
P

l flfl-kg = jf̂(�)j2 where f̂(�) =
P

k fke
-i�k.
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multiplicity M at � = �. This is done by means of spectral factoriza-
tion techniques (see—notably— [Dau88, BS94, Mal98]). The regular-
ity of the multiresolution analysis increases as N increases (roughly
like 0:2075M for large M [JS93, Mey94]). However, these wavelets can-
not be symmetric (except for M = 1 which corresponds to the Haar
wavelet). Figure 5 presents some scaling functions and wavelets of the
Daubechies family. These functions have been generated using a cas-
cade algorithm [Del93, BS94] which (roughly) consists in applying the
inverse wavelet transform algorithm on respectively the fhkg and the
fgkg. The filter coefficients for M = 2; : : : ; 10 are available in [Dau88]
(table 1, page 980).

Other orthogonal wavelet basis have been built using this philoso-
phy. An interesting example is the coiflets contructed by Ronald Coif-
man [BCR91]. For this family, the scaling function also has some
vanishing moments (except the first one) and these functions leads
to discrete filters having 3M - 1 non-zero coefficients. See [BCR91].
Other families of orthogonal and biorthogonal wavelets are (notably)
designed in [CDF92, VH92], [Mal98] provides an up-to-date exposition
on the subject.

7 Bi(multi)dimensional wavelet transform

This section generalizes the notion of wavelet transform and orthogo-
nal multiresolution analysis in two dimensions. We first (briefly) intro-
duce the spaces L2(Rn) and Lp(Rn), then defines the continuous wavelet
transform on L2(R2) and build orthogonal multiresolution analysis of
L2(R2) by means of separable wavelet basis. Obviously, these exten-
sions are necessary for being able to use the wavelet analysis in an
image processing context.

7.1 Spaces: L2(R2), L2(Rn) and Lp(Rn)

The spaces L2(R2), L2(Rn) and Lp(Rn) are “natural extensions” of L2(R)
(space of square integrable function of one variable, see x1). L2(R2), the
space of square integrable functions of two variables, is defined as

L2(R2) =

�
f=

Z+1
-1

Z+1
-1

jf(x; y)j2dxdy <1 ; f; g 2 L2(R2)
provided the following scalar product and the following norm

< f; g >L2(R2)=

Z+1
-1

Z+1
-1

f(x; y)g�(x; y)dxdy; kfk2L2(R2) =< f; f >L2(R2)
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Figure 5 Some of the Daubechies scaling functions and wavelets.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

Daub2 (sca.)

(a) �2.

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2

Daub2 (wav.)

(b)  2.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Daub3 (sca.)

(c) �3.

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Daub3 (wav.)

(d)  3.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7

Daub4 (sca.)

(e) �4.

-1

-0.5

0

0.5

1

1.5

-3 -2 -1 0 1 2 3 4

Daub4 (wav.)

(f)  4.

28



Obviously, the more general space L2(Rn) is defined as

L2(Rn) =

�
f=

Z
Rn

jf(~z)j2d~z <1 ; ~z 2 Rn (32)

with

< f; g >L2(Rn)=

Z
Rn

f(~z)g�(~z)d~z; kfk2L2(Rn) =< f; f >L2(Rn)
Finally, Lp(Rn) is defined (for 1 � p � 1) by replacing 2 by p in equa-
tion (32) and the norm operator becomes (with the usual modification
for p =1)

kfkLp(Rn) =
�Z

Rn

jf(~z)jpd~z

� 1
p

The concepts of wavelet transform and multiresolution analysis can be
easily generalized for L2(Rn) (see the next subsection for L2(R2)), but
the generalization for Lp(Rn) is trickier16, the reader is (notably) sent
to [Mey90].

7.2 Continuous wavelet transform on L2(R2)

The continuous wavelet transform of a function f of two variables be-
longing to L2(R2) is a staightforward generalization of the one-dimen-
sional case presented in x3. Formally, given a wavelet 	

Wf(a; b; b
0) =< f; 	a;b;b 0 >L2(R2); 	a;b;b 0(x; y) =

1

a
	

�
x- b

a
;
y - b 0

a

�

The reader is (notably) sent to [Mal98] for more details (including the
wavelet transform using wavelets with different spatial orientations).

7.3 Multiresolution analysis of L2(R2)

A simple way of building an orthogonal multiresolution of L2(R2) con-
sists in using separable wavelet basis which is done via the following
theorem (notably prooved in [Mal98]).

Theorem 7 (Separable multiresolution) Let � and  (respectively) be
the scaling function and the wavelet generating an orthogonal multires-
olution on L2(R) and define

	(1)(x; y) = �(x) (y); 	(2)(x; y) =  (x)�(y); 	(3)(x; y) =  (x) (y)

16In that general case, we have to deal with some paradoxal behaviors e.g. if we
directly use an orthogonal decomposition of the form f(x) =

P
j

P
k < f; j;k >  j;k(x)

( is supposed to have at least one vanishing moment) on f(x) = 1 (f 2 L1(R)) we end
up with < f; j;k >= 0; 8j; k 2 Z2 and hence with 1 = 0! See [Mey90] for more details.
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For � 2 f1; 3g

	
(�)

j;k;k 0 = 2
j	(�)(2jx- k; 2jy - k 0)

Then the families f	
(�)

j;k;k 0g�2f1;3g; k;k 02Z2 and f	
(�)

j;k;k 0g�2f1;3g; j;k;k 02Z3 (respective-
ly) form orthogonal basis of W2

j and L2(R2).

The wavelet transform of an image is then organized as shown on fig-
ure 6. For example, the coefficients (1)

j;k;k 0 =< f; 	
(1)

j;k;k 0 > correspond to
the one dimensional scalar product of f with �j;k according to the rows
and to the scalar product of f with  j;k 0 according to the columns of
the image. As discussed in [BS94, Sta92]: (1)

j;k;k 0 corresponds to the
horizontal low frequencies and to the vertical high frequencies (verti-
cal details) of �j+1;k;k 0 =< f;�j+1;k;k 0 > (�(x; y) = �(x)�(y)), while (2)

j;k;k 0

and 
(3)

j;k;k 0 respectively correspond to its horizontal high/vertical low
and horizontal high/vertical high frequencies (horizontal and diago-
nal details). The algorithm for computing the wavelet coefficients of
an image becomes a straightforward extension of the decimated filter
banks algorithm used in one dimension (see x6.1). Basically, it con-
sists in applying the one dimensional algorithm on the rows followed
by the same operation on the columns (the order does not matter) for
each scale, i.e. for computing the wavelet coefficients at scale j from
the scaling coefficients at scale j + 1. Note that it is possible to create
non-separable wavelet basis of L2(R2) [KV92], but in spite of their in-
teresting properties e.g. orthogonal, compactly supported and symetric
wavelets (which is not possible in the one dimensional case), they are
not very used in practice. Figure 7 shows the wavelet decompositions
of some images.

Figure 6 Organization of a two-dimensional wavelet decomposition.

. . .. . .

~z = (x y)T

	(1)(~z) =

�(x) (y)

	(3)(~z) =

 (x) (y)

	(2)(~z) =

 (x)�(y)

“Low-High”

“High-Low”

“High-High”

. . .
�
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Figure 7 Wavelet decompositions of some images (Daubechies-8).

(a) “Lenna”. (b) Its wavelet decomposition.

(c) A disk. (d) Its wavelet decomposition.
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8 Denoising in the wavelet space

As a example of application we introduce the well-known wavelet-based
denoising algorithms proposed a few years ago by David Donoho and
Ian Johnstone [DJ91, DJKP92, DJ94, Don95]. As we shall see later,
the (orthogonal) wavelet transform is optimal (in some sense which is to
be defined) for characterising signals containing isolated singularities
with a few high coefficients. This fact and the convenient behavior
of gaussian white noise in the wavelet space can be used to design
performant non-linear denoising methods.

8.1 Denoising via wavelet shrinkage

The purpose of denoising is to estimate a real function f from a set of
corrupted measurements. A simple statistical model consists in con-
sidering that the samples are corrupted by an additive gaussian white
noise i.e.

Gk = fk + �Bk; Bk  N (0; 1) iid; � 2 R�+
In a orthogonal basis of l2(f0;N- 1g) e.g. f�kgk2f0;N-1g, the expansion of a
gaussian white noise remains a gaussian white noise [CSBF98, Mal98]
(in all this section, < :; : > and k:k should be understood in a l2(f0;N-1g)

sense). Proof:

E[< B; �k >] =

N-1X
l=0

E[Bl]�
�
k[l] = 0

and

COV[< B; �k >;< B; �l >] = E[< B; �k >< B; �l >
�]

=

N-1X
m=0

NX
n=0

E[BkBl]| {z }
Æm;n

��k[m]�l[n]

=

N-1X
m=0

��k[m]�l[m] =< �k; �l >
�= Æk;l

Since a linear combination of iid gaussian random variables gives a
gaussian random variable, and since the abscence of correlation COV(X;Y) =

0; X 6= Y implies (for gaussian random variables) the independance of
the two variables, we have < B; �k > N (0; 1) iid. In what follows,
we present the two main philosophies for building some estimates of
f, namely: coefficients attenuation (“implemented” via a soft thresh-
olding) and coefficients selection (hard thresholding). The next two
subsubsections summarize the ideas developed in [Mal98].
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8.1.1 Coefficients attenuation

From the noisy signal G, we contruct an estimator of the form

F̃ =

N-1X
k=0

< G; �k > �[k]�k

Here, we focus on non-linear estimators that depends on the realisa-
tion of G. We now consider the mean square error17

E[kf- F̃k2] =
N-1X
k=0

E[j < f; �k > - < G; �k > �[k]j
2]| {z }

"

Since < G; �k >=< f; �k > +� < B; �k >, we have

" = E[j < f; �k > (1- �[k]) - � < B; �k > �[k]j
2]

= j < f; �k > j2(1- �[k])2 + �2�[k]2

because E[< B; �k >] = 0 and E[j < B; �k > j2] = 1. By solving @"
@�[k]

= 0, one
derives that " is a minimum for

�[k] =
j < f; �k > j2

j < f; �k > j2 + �2
(33)

leading to the mean square error

E[kf- F̃k2] =
N-1X
k=0

j < f; �k > j2�2

j < f; �k > j2 + �2

Note that equation (33) can be seen as a “generalized” Wiener filter. If
the basis functions f�gk2f0;N-1g were the complex exponentials of Fourier
analysis we would end up with

�[k] =
1

1+ �2

jf̂[k]j2

which is precisely the expression of the Wiener filter [GW92] for a point
spread function equal to Æ.

17Recall that an orthonormal basis of an abstract Hilbert space is a particular case
of a Riesz basis with A = B = 1 [Dau92], therefore kfk2 =

P
k j < f; ek > j2 (see

definition 10, page 64, as well).
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8.1.2 Coefficients selection

A coefficient selection is performed by requiring that �[k] takes binary
values, i.e. the estimator consists in selecting a subset of the noisy
coefficients of G. In that case, it is obvious that the mean square error
(still equal to: E[kf - F̃k2] = j < f; �k > j2(1 - �[k])2 + �2�[k]2) is minimized
by an operator of the form

�[k] =

�
1 if j < f; �k > j2 � �2
0 otherwise

The mean square error produced by this ideal selection procedure

E[kf- F̃k2] =
N-1X
k=0

min(j < f; �k > j2; �2) (34)

remains of the same order than the one introduced by the attenuation
operator [Mal98]. Obviously, because of our lack of knowledge about
< f; �k >, the ideal coefficients attenuation and selection cannot be
implemented. However, since the work of David Donoho (see notably
[DJ94]), it is known that the performances of some thresholding esti-
mators (applied on the empirical wavelet decomposition) are closed to
the ones of the ideal procedures previously discussed.

8.1.3 Denoising in orthogonal wavelet basis

We have not yet spoken about denoising in orthogonal wavelet basis.
Basically, the choice of the basis in which a non-linear operator is
applied is crucial. The best (non-linear) approximation of a function f
(with M vectors) in an orthogonal basis is given by

fM =
X

j<f;�k>j��
< f; �k > �k

while the approximation error is equal to

kf- fMk2 =
X

j<f;�k>j<�

j < f; �k > j2

For the ideal selection procedure previously dicussed, the mean square
error (equation (34)) can therefore be written as

E[kf- F̃k2] = kf- fMk2 +M�2

hence, the mean square error is small only if the approximation error
and M�2 are both small, i.e. we want a basis in which the function
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f is coded by a few large coefficients which characterize it relevantly.
This, for example, eliminates the complex exponential basis for esti-
mating a function containing some singularities: this type of signals
generates non-neglectible coefficients in all the Fourier spectrum. The
convenience of using orthogonal wavelet basis comes from the fact that
a r-regularly (in the sense defined by Yves Meyer [Mey90]) orthogo-
nal wavelet basis provides unconditionnal basis for a wide range of
smoothness spaces [Mey90] (namely: Hölder, Sobolev, Besov spaces,
. . . ). For example, piecewise regular functions, i.e. functions con-
taining isolated singularities (belonging to the Besov space(s)), are ef-
ficiently approximated with a few large coefficients [Don91, Mal98],
see x12.3. The only a priori knowledge about the desired result is the
order of a given Besov-norm and the implementation of the algorithm
does not depend on its parameters (�; p; q) [Mey94].
The last problem deals with the necessity of approximating the ideal
operators and estimating their parameters (e.g. �). For example, a
hard-thresholding operator

F̃ =

N-1X
k=0

�(< G; �k >)�k; �(x) =

�
x if jxj � T
0 otherwise

(35)

with18 T = �
p

logN, produces a mean square error which remains
within a 2 logN factor of the ideal error and is asymptotically opti-
mal in a minimax sense [DJKP92]. The reader is notably sent to
[Mal98, Don95] for some discussions on the operators (e.g. hard/soft
thresholding) and the threshold choices.

9 Wavelet maxima

Multiscale edges have been introduced in order to deal with the prob-
lem of noise while performing a contour extraction task, e.g. [Ber87].
A popular strategy consists in using a detection operator which is the
first or second order of a low-pass filter (e.g. gaussian filter [Can86] or
the exponential filter [Der87]) in order to reduce the noise and carry

18In practice, the noise variance is not known and need to be estimated. This is
done by using �̃ =MED=:6745 where MED denotes the median of the absolute values
of the empirical wavelet coefficients at the finest scale (recall that

R+:6745�
-:6745�

g�(x)dx =

:5 [DN89]). When f is piecewise smooth, it generates only a small number of non
vanishing coefficients at the finest scale (the wavelet overlaps the singularities for
only a few values of the translation parameter) and the median is not very sensitive
to a few outliers.

35



out the edge detection. Obviously, this method have a fundamen-
tal disadvantage: the “good” localization and “good” detection crite-
ria [Can86] (see 11.1) are dual and cannot be simultaneously arbitrary
small. In order to overcome this limitation, Fredrik Berghlom [Ber87]
has proposed a procedure, known as “edge focusing”, which consists
in computing the output of the Canny detector for different values of �
(i.e. scales) and detecting the edges using a coarse-to-fine tracking.
This philosophy has been retained for designing feature-based im-
age representations19, using “classical” multiscale decompositions (e.g
[HM89]) or the wavelet transform [Mal91, MH92, MZ92]. These repre-
sentations allow to reconstruct an approximation of the original image
from its multiscale edges (the uniqueness and stability of these repre-
sentations is notably adressed in [Ber91, Ber92, BB93, Mey94]). Be-
cause of the possibility of “practical” reconstruction, it has been fore-
seen by Stéphane Mallat [MZ92] that many image processing tasks
could be implemented using edge-based algorithms.

9.1 Multiscale edges

In this section, we only focus on the wavelet maxima representation.
Information about the zero-crossing representation are available (no-
tably) in [Mal91]. The following theorem (notably prooved in [Mal98])
implies that a wavelet having one vanishing moment corresponds to
the first order derivative of a smoothing operator.

Theorem 8 A wavelet  with a fast decay has n vanishing moments if
and only if there exists � (a smoothing operator) with a fast decay such
that

 (x) = (-1)n
dn�(x)

dxn

As a consequence

Wf(a; b) = a
n d

dbn
(f
 �̄a)(b)

where �a(x) = a-1
2�(x=a). Moreover,  has no more than n vanishing

moments if and only if
R+1
-1
�(x)dx 6= 0.

Hence,

 (x) = -
d�

dx

19Known as adaptive quasi-linear representations (AQLR).
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The dyadic wavelet transform (the use of a dyadic wavelet transform is
motivated by its translation invariance and its redundancy) can there-
fore be interpreted as

Wf(2
j; b) = 2j

d

db
(f
 �̄2j)(b)

As j increases, Wf(2
j; b) is smoother. For example, if � is a Gauss

function, one ends up with a multiscale Canny operator. Under this
condition the dyadic wavelet transform provides a multiscale gradient
from which the points of sharp variation can be extracted.

9.1.1 Quadratic spline wavelet

For being able to use the algorithme à trous (see x3.3), it is required
that

�̂(�) = ĥ(�=2)�̂(�=2) and  ̂(�) = ĝ(�=2)�̂(�=2)

where ĥ(�) and ĝ(�) are the Fourier transform of two discrete filters
(the same constraints should be satisfied by ^̃�(�) and ^̃ (�)). Since  
should be the first order of a smoothing operator,  ̂(�) must have a
zero of order 1 at � = 0. Because �̂(0) = 0 the constraint is moved
onto ĝ(�). Moreover, ĥ(�) is chosen such that  (x) is antisymetrical,
is as regular as possible and has a small compact support. Stéphane
Mallat [MZ92] has proposed the following family of filters

ĥ(�) = ^̃h(�) = e
i�
2 cos(�=2)2n+1; ĝ(�) = 4ie

i�
2 sin(�=2) and ^̃g(�) =

1- jĥ(�)j2

ĝ(�)

This leads to the filter coefficients, available in [MZ92] (table 1, page
728), and to the following scaling function, wavelet and smoothing op-
erator

�̂(�) = sinc(�=2)2n+1;  ̂(�) = i�sinc(�=4)2n+2 and �̂(�) = sinc(�=4)2n+2

note that sincx = sinx
x

. Choosing 2n + 1 = 3 leads to a scaling func-
tion and a smoothing operator which are respectively a cubic and a
quadratic spline. Figure 8 shows the modulus of their Fourier trans-
forms.

9.1.2 Algorithme à trous in two dimensions

In two dimensions, the dyadic wavelet transform is (most of the time)
defined by using two spatially oriented separable wavelets [Mal98]

	(1)(x; y) =  (x)�(y) = -
@

@x
�(1); 	(2)(x; y) = �(x) (y) = -

@

@y
�(2) (36)
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Figure 8 Quadratic spline wavelet.
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and a separable scaling function �(x; y) = �(x)�(y). The resulting al-
gorithm becomes (roughly) a straightforward extension of the one di-
mensional case (x3.3) which consists in iteratively applying separable
filters on the scaling coefficients for obtaining the scaling and wavelet
coefficients at the next scale. As usual, for practical images, the first
coefficients are given by the grey-scale values of the original image
(see 3.4). Figure 9 shows the dyadic wavelet transform of the “lenna”
image, computed using the scaling function/wavelet pair presented in
the previous subsection. More details are available in [MZ92, Mal98].

9.1.3 Contours extraction

From the definition of 	(1) and 	(2), it directly follows that the wavelet
coefficients are proportionnal to the gradient of the image smoothed by
�2j (�(1) � �(2) [MZ92]) i.e. 

W(1)

f (2j; b; b 0)
W(2)

f (2j; b; b 0)

!
=

�
2j @
@b
(f
 �̄2j)(b; b 0)

2j @
@b 0 (f
 �̄2j)(b; b 0)

�
= 2j~rf
 �̄2j(b; b 0)

This information can therefore be used (as in a classical edge detector)
for extracting the multiscale edges. The modulus of the gradient is
proportionnal to the modulus of the wavelet coefficients

j~rf
 �̄2j(b; b 0)j /
q

jW(1)

f (2j; b; b 0)j2 + jW(2)

f (2j; b; b 0)j2

and its orientation is given by

�(2j; b; b 0) = tan-1 W(2)

f (2j; b; b 0)

W(1)

f (2j; b; b 0)

The detection consists in two main steps: it is first necessary to extract
the local maxima of the gradient norm in the gradient direction and
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Figure 9 Beginning of a two-dimensional dyadic wavelet transform.

(g) Scaling coeff. (h) Wave. co. (	(1)). (i) Wave. co. (	(2)).
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secondly, to suppress the non-significant local maxima via a thresh-
olding operation. This last operation in often implemented using an
hysteresis thresholding (more details are available in [Der, CP95] and
in x11 as well).
The set of values,


 = ff(bk b
0
k)
T; (W(1)

f (2j; bk; b
0
k) W(2)

f (2j; bk; b
0
k))

Tgk=1;���;Njgj2Z

where (bk b
0
k)
T denotes the coordinates of a local maximum, is called

the wavelet maxima representation of the image. For a digital N � N
image, the wavelet maxima representation obviously becomes


 = ff(ik i
0
k)
T; (W(1)

f (2j; ik; i
0
k) W(2)

f (2j; ik; i
0
k))

Tgk=1;���;Njgj=0;���;log2N

where (ik i
0
k)
T is an integer-valued vector. See figure 10.

9.2 Reconstruction from local maxima

As pointed in (notably) [Ber91, Mey94], the wavelet maxima represen-
tation does not characterize uniquely a given function f. However, two
functions having the same local maxima differ mainly and only slightly
on their high-frequency content, which makes the reconstruction suit-
able for practical purposes [Mal98, Mey94]. Here, we shortly present
the alternate projection algorithm, introduced in Stéphane Mallat’s
articles. However, other alternative algorithms have been proposed
in [Car, CV95]. We restrict ourselves to the one dimensional case,
since the two dimensional algorithm is a straightforward extension and
is fully presented in [MZ92].

9.2.1 The alternate projection algorithm

Basically, our goal is to find a sequence of functions fg jgj2Z such that: it
is the wavelet transform of a function of L2(R), it has the same wavelet
maxima as Wf and not more. As pointed in [MZ92], this last condition
(not more) is not convex and cannot be implemented easily, thus it
is relaxed and replaced by requiring the following Sobolev norm to be
minimum

kfgjgj2Zk2K =
X
j

kgjk2L2(R) + 22j
dgjdx


2

L2(R)

The constraint on kdgj=dxk2L2(R) allows to control the appearance of
spurious maxima and the multiplication by 2 j express the fact that
gj should be smoother as j increases. Let K be the set of all the se-
quences fgjgj2Z such that kfgjgj2ZkK is finite. Let V denote the space of
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Figure 10 Multiscale edges extracted from the “lenna” image.

(g) Gradient norm. (h) Local maxima. (i) Hysteresis
thresh.
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all the sequences fgjgj2Z such that their are the wavelet transform of a
function belonging to L2(R) i.e. such that the sequence fgjgj2Z satisfies
the reproducing kernel equation (equation (10) or (11)). Let � be the
set of sequences fgkgj2Z such that for all j and for all maxima position
xk we have

Wf(2
j; xk) = gj(xk)

The alternate projection algorithm converges to a sequence fg?

j gj2Z, lying
in � = V \ �, by alternatively project the current sequence onto V and
�. Starting from the initial guess fgjg

(0)

j2Z 2 V (in general gj(x) = 0; 8j),
the algorithm is simply expressed as

fgjg
(k+1)

j2Z = PV(P�(fgjg
(k)

j2Z))

where PV and P� are respectively the orthogonal projectors that project
a set of functions of K onto (respectively) V and �.
PV is simply equal to W ÆW-1 where W denotes the wavelet transform
operator, i.e. PV is implemented by taking the inverse wavelet transform
of fgjgj2Z 2 K followed by a wavelet transform. The P� operator is trickier,
it transforms a sequence in fgjgj2Z 2 K into a sequence fhjgj2Z 2 � such
that its K-norm is minimum. After solving a simple problem of calculus
of variation [Mal98] (again!), one finds that hj(x) = �j(x) + gj(x) where

�j(x) = �e
2-jx + �e-2

-jx

; x 2 [xk; xk+1]

xi and xi+1 are the absissa of two consecutive local maxima and �; �
should be chosen such that�

�j(xk) = Wf(2
j; xk) - gj(xk)

�j(xk+1) = Wf(2
j; xk+1) - gj(xk+1)

An implementation of P� is available page 58. For more details (stability
of the reconstruction, rate of convergence, . . . ) the reader is sent to the
articles already cited in this subsection.

9.2.2 Practical considerations

Even if the representation is not unique, the algorithm is suitable for
practical purpose. Figure 11, presents some experimental results on
the “lenna” image. On a visual point of vue there is no difference be-
tween images (a) and (b) (image (b) has been reconstructed using all the
wavelet maxima of the original one). If we consider only the significant
maxima, we loose some textural information, but the reconstructed
images still approximate correctly the original image ((c) and (d) have
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been computed by considering smaller sets of local maxima). This phe-
nomenon is stated in [Mal98], as well. Our experiments also suggest
that 15 to 30 iterations are required for building a reasonnable ap-
proximation of an image. Obviously, due to its iterative nature, the
reconstruction algorithm is computationaly intensive and is not suit-
able (in its direct form) for real-time processing.

9.3 Estimation of K, � and �

An interesting property of the wavelet maxima representation is that it
allows to estimate some of the parameters that characterize an isolated
singularity20. The following theorem, prooved in [Mey90], relates the
decay of the wavelet coefficients to the Hölder regularity (see definition
page 64) of the original function.

Theorem 9 A function f is uniformly Hölder-� over the interval [a; b] if
and only if there exists K > 0 such that

8c 2 [a; b]; jWf(2
j; c)j � K2j�

This theorem also holds for tempered distributions, e.g. Æ. As a basic
consequence: if a function is uniformly Hölder-� (� < 0) the ampli-
tude of the wavelet coefficients decrease as j increase, while if � > 0

the coefficients increase with the scale parameter. Now, if we reintro-
duce the gaussian model discussed in x??, i.e. the function f contains
an isolated Hölder-� singularity at � 2 [a; b] smoothed by a gaussian
operator, we have

Wf
g�(2
j; c) = 2j

d

dc
(f
 g� 
 �̄2j)(c)

Assuming that g� 
 �̄2j � �̄�; � =
p
�2 + 22j leads to

Wf
g�(2
j; c) � 2j

�
Wf(�; c)

Therefore, if f is Hölder-� over [a; b], we end up with

9K > 0; 8c 2 [a; b]; jWf
g�(2
j; c)j � K2j��-1

Which can be rewritten as

log2 jWf
g�(2
j; c)j � log2K+ j+

�- 1

2
log2(�

2 + 22j) (37)

20The non-isolated singularities case is notably addressed in [MH92, HM93].
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Figure 11 Reconstruction via the alternate projection algorithm.

(a) Original image. (b) Reconstruction from all the
local maxima (30 it.).

(c) Reconstruction from a sub-
set of the local maxima (30 it.).

(d) Reconstruction from a
smaller subset of the local
maxima (30 it.).
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Given the wavelet maxima trace fcj; jWf
g�(2
j; cj)jg1�j�J of the singularity

at � 2 [a; b], Stéphane Mallat (in [MH92, MZ92]) proposes to estimate
K, � and � by finding their values such that equation (37) is as close
as possible of an equality. This is done by optimizing
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where K(0), �(0) and �(0) are chosen arbitrarly. These parameters ex-
press different characteristics of the singularity: K is related to its am-
plitude, � to its type and � to its degree of smoothness. However,
the raw wavelet maxima representation is not sufficient for estimating
these values, since we need to access the wavelet maxima trace of the
singularity, i.e. we need to link the wavelet maxima across scales. This
representation, known as the wavelet maxima tree, is briefly presented
in the next subsection.

9.4 The wavelet maxima tree

In order to link the wavelet maxima across scales one can use an ad
hoc algorithm, as the one proposed in [MZ92]. Basically, it consists in
linking two successive wavelet maxima if they are close to each other
and if their corresponding values are of the same sign and of the same
order. However, smarter algorithms can be found in the litterature
such as the one in [Lu93]. From the sets of wavelet maxima at scales j
and j+ 1
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Jian Lu proposes a measure of interaction based on the reproducing
kernel corresponding to the wavelet (recall equations (10) and (11))
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The wavelet maxima tree is then constructed reccursively using a coarse-
to-fine strategy. For a given maxima at scale j, the maxima at scale

j + 1 which maximizes �
�
c
(j+1)

k ; c
(j)

l

�
is marked as its parent node. The
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main child of a parent node at scale j + 1 is the one which maximizes

�
�
c
(j)

l ; c
(j+1)

k

�
among its children. A main branch connects a maxima

to the tip end of the tree and provides the approximation of the trace
of a wavelet maxima required for estimating the parameters discussed
in the previous subsection. Note that this algorithm works only if the
smoothing operator � is a good approximation of a Gauss function, this
implies that the behavior of the wavelet maxima is convenient, e.g. it
satisfies a causality property (any feature at a coarser scale must have
its origin at a finer scale), see [Ber87, Lu93]. This algorithm also re-
quires to estimates the reproducing kernel of the wavelet transform. A
more detailled presentation is available in [Lu93].
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[CSBF98] P. Carré, P. Simard, D. Boichu, and C. Fernandez.
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10 Wavelet transform algorithms

This section presents the implementation, using the C-language, of a
few wavelet transform algorithms. Programs 10.1 and 10.2 propose
some implementations of (respectively) the algorithme à trous and its
inverse (see x3.3 and algorithm 2, page 12). Programs 10.3 and 10.4
give implementations of the fast wavelet transform and its inverse dis-
cussed in x6.1 (see algorithm 4, page 22, as well). Program 10.5 gives
an implementation of the P� operator, discussed in x9.2.1, coming from
cs.nyu.edu/pub/wave .

11 Contours extraction

This section describes the pipeline of contours extraction, based on
the gradient approach, i.e. only one differentiation. In what follows,
we briefly introduce the Canny [Can86] and Deriche [Der87] operators,
we then discuss the different steps (extraction of the local maxima
and hysteresis thresholding) necessary to obtain the contours from the
output of an operator.

11.1 Optimal edge detectors

11.1.1 A simple edge model

The basic idea behind optimal operators is based on a continuous edge
model of the form

I(x) = Au-1(x) + B(x)
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Program 10.1 Implementation of the algorithme à trous.
void atrous(float *next_a,

float *next_d,float *a,int s,int n,
float *h,int h_begin,int h_end,
float *g,int g_begin,int g_end)

{
int i,j;
for(i=0;i<n;i++)
{

next_a[i]=.0;
for(j=h_begin;j<=h_end;j++)
{

int ii=i+(j<<s);
ii=(ii<0?(n+ii)%n:(ii>=n?(ii%n):ii));
next_a[i]+=a[ii]*h[j-h_begin];

}
next_d[i]=.0;
for(j=g_begin;j<=g_end;j++)
{

int ii=i+(j<<s);
ii=(ii<0?(n+ii)%n:(ii>=n?(ii%n):ii));
next_d[i]+=a[ii]*g[j-g_begin];

}
}

}
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Program 10.2 Implementation of the inverse algorithme à trous.
void iatrous1d(float *next_a,

float *next_d,float *a,int s,int n,
float *h,int h_begin,int h_end,
float *g,int g_begin,int g_end)

{
int i,j;
for(i=0;i<n;i++)
{

next_a[i]=.0;
for(j=h_begin;j<=h_end;j++)
{

int ii=i+(j<<s);
ii=(ii<0?(n+ii)%n:(ii>=n?(ii%n):ii));
next_a[i]+=a[ii]*h[j-h_begin];

}
next_d[i]=.0;
for(j=g_begin;j<=g_end;j++)
{

int ii=i+(j<<s);
ii=(ii<0?(n+ii)%n:(ii>=n?(ii%n):ii));
next_d[i]+=a[ii]*g[j-g_begin];

}
}

}
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Program 10.3 Implementation of the fast wavelet transform.
int fwt1d(float *sig,int n,

float *h,int h_begin,int h_end,
float *g,int g_begin,int g_end)

{
float *tmp;
int i,j,min_l=MAX(min_length(h_begin,h_end),

min_length(g_begin,g_end));
if(tmp=(float*)malloc(n*sizeof(float)),!tmp)
{

fprintf(stderr,"\nmalloc() error\n");
exit(1);

}
while(n!=min_l)
{

for(i=0;i<n;i+=2)
{

tmp[i>>1]=.0;
tmp[(i>>1)+(n>>1)]=.0;
for(j=h_begin;j<=h_end;j++)
{

register int k=i+j;
tmp[i>>1]+=h[j-h_begin]*(k<0?sig[n+k]:

(k>=n?sig[k%n]:sig[k]));
}
for(j=g_begin;j<=g_end;j++)
{

register int k=i+j;
tmp[(i>>1)+(n>>1)]+=g[j-

g_begin]*(k<0?sig[n+k]:
(k>=n?sig[k%n]:sig[k]));

}
}
memcpy(sig,tmp,n*sizeof(float));
n>>=1;

}
free(tmp);
return(min_l);

}
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Program 10.4 Implementation of the fast inverse wavelet transform.
void ifwt1d(float *sig,int n,

float *h,int h_begin,int h_end,
float *g,int g_begin,int g_end)

{
float *tmp;
int i,j,l=MAX(min_length(h_begin,h_end),

min_length(g_begin,g_end));
if(tmp=(float*)malloc(n*sizeof(float)),!tmp)
{

fprintf(stderr,"\nmalloc() error\n");
exit(1);

}
while(l!=n)
{

for(i=0;i<l<<1;i++)
{

tmp[i]=.0;
for(j=-h_end;j<=-h_begin;j++)

if( !((i+j)&0x1) )
{

register int k=(i+j)/2;
tmp[i]+=h[-j-h_begin]*(k<0?sig[l+k]

:(k>=l?sig[k%l]:sig[k]));
}

for(j=-g_end;j<=-g_begin;j++)
if( !((i+j)&0x1) )
{

register int k=(i+j)/2;
tmp[i]+=g[-j-g_begin]*(k<0?sig[l+k+l]:

(k>=l?sig[k%l+l]:sig[k+l]));
}

}
l<<=1;
memcpy(sig,tmp,l*sizeof(float));

}
free(tmp);

}
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Program 10.5 Implementation of P�.
interp(float u0, float un, int n,

float *u, float r1)
{

double r_1, r_2, r2,
rn_1, r2n_2, r2n,
r2n_2i, rn_i, ri, r2i, a0, an;

int i;
rn_1=r1;
for(i=1;i < n-1;++i)

rn_1*=r1;
r2n_2=rn_1*rn_1;
r_1=1./r1;
r_2=r_1*r_1;
r2=r1*r1;
r2n=r2n_2*r2;
a0=u0/(1.-r2n);
an=un/(1.-r2n);
u[0]=u0;
r2n_2i=r2n_2;
r2i=r2;
ri=r1;
rn_i=rn_1;
for(i=1;i<n;i++)
{

u[i]=a0*ri*(1-r2n_2i)+an*rn_i*(1-r2i) ;
r2n_2i*=r_2;
r2i*=r2;
ri*=r1;
rn_i*=r_1;

}
u[n]=un;

}
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where u-1(x) denotes the unit-step function and B(x) is a centered
gaussian white noise of variance equal to �2. We then consider the
convolution �(x) with an edge detector f(x)

�(x) =

Z+1
-1

I(y)f(x- y)dy

11.1.2 The Canny criteria

According to this model, John Canny [Can86] has proposed to opti-
mize the three following requirements, in order to find the form of the
detector f.

Low probability of error (failing to mark of falsely marking real edge
points). This criterion consists in finding an asymetric operator which
maximises the signal-to-noise ratio, i.e.

� =

R0
-1
f(x)dx

�

qR+1
-1
f2(x)dx

Good localization. points marked as edges should be as closed as
possible to the true edge. This criterion is defined as being the inverse
of the standard deviation of the position of the true edge, i.e.

� =
Ajf 0(0)jqR+1
-1
f
02(x)dx

Only one response to a single edge. consists in a constraint on the
average distance between two maxima (xmax), i.e.

xmax =

vuut R+1
-1
f
02(x)dxR+1

-1
f
002(x)dx

John Canny has then proposed a FIR operator which optimizes the
product �� under the constraint that the third criterion is fixed to a
constant value k. In practice, the Canny operator is approximated by
the first derivative of a Gauss function which leads to �� = :92 (k = :51).
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11.1.3 The Deriche operator

Rachid Deriche [Der87] has derived an IIR operator that optimizes ��
and leads to �� = 2 (k = :44). The operator has the form21

f(x) = Sxe-�jxj

In one dimension, this operator can be implemented using two sta-
ble second order reccursive filters (an implementation using the C-
language is given in program 11.1). An interesting property of the
operator comes from the � parameter which allows to adapt it to the
content of the image. Roughly, for a noisy image, � has to be small
(:25 to :5) which means that � (detection) is favoured to the detriment
of � (localization), one the other hand, for a “clean” image, � must be
relatively large (� 1). In two dimensions, the output of the operator is
computed via two sets of two reccursive filters applied separately on the
rows and the columns of the image (this operation must be performed
twice—with different parameters—for obtaining the partial derivatives
according to x and y). More details (derivation, implementation, . . . )
are notably available in [Der, CP95]. Figure 12 shows the output of the
Deriche operator on the “singe” image.

11.2 Local maxima and hysteresis thresholding

11.2.1 Extraction of the local maxima

Given some estimations of the partial derivatives according to x and y,
one can compute the norm and the direction of the gradient, i.e.

j~rIj =
s�

@I

@x

�2
+

�
@I

@y

�2
and

� = tan-1 @I=@y

@I=@x
(38)

and use this information in order to extract the local maxima of the
gradient norm in the gradient direction. This is necessary for obtain-
ing thin coutours, i.e. contours whose thickness is equal to one pixel.
However, the coordinates given by the gradient direction do not coin-
cide (in general) with integer pixel coordinates: a bilinear interpolation
scheme should be applied is order to get a value at this location. A
given point is then marked as a local maxima if its value is greater than
those of its two neighbours in the gradient direction. See figure 13.

21It is the limit of f(x) = S
!
e-�jxj sin!x when ! ! 0. This case corresponds to the

largest value of ��.
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Program 11.1 Implementation of the one-dimensional Deriche opera-
tor.
#define SQR(x) ((x)*(x))
#define ABS(x) (x<0?-1:(x>0?1:0))
void deriche1d(float *x,int n,float a)
{

int i;
float *y1,*y2,b,c,k;
if(y1=(float*)malloc(n*sizeof(float)),

y2=(float*)malloc(n*sizeof(float)),
!y1 || !y2)

{
fprintf(stderr,"\nmalloc() error");
exit(1);

}
b=(float)exp((double)(-a));
c=(float)exp((double)(-2*a));
k=SQR(1-b)/(1.+2.*a*b-c);
for(i=0;i<n;i++)
{

int ii=n-i-1;
y1[i]=(i-1<0?.0:x[i-1])+

2*b*(i-1<0?.0:y1[i-1])-
c*(i-2<0?.0:y1[i-2]);

y2[ii]=(ii+1>=n?.0:x[ii+1])+
2*b*(ii+1>=n?.0:y2[ii+1])-
c*(ii+2>=n?.0:y2[ii+2]);

}
for(i=0;i<n;i++)

x[i]=ABS(k*b*(y1[i]-y2[i]));
free(y1);
free(y2);

}
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Figure 12 Output of the Deriche operator.

(a) Original image. (b) @
@x
I
 f.

(c) @
@y
I
 f. (d) Gradient norm.
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11.2.2 Hysteresis thresholding

The last step consists in eliminating the non-significant local maxima,
i.e. those which correspond to small values of the gradient norm. Most
of the time, this operation is performed via a thresholding procedure. A
smart way of doing it is called a hysteresis thresholding: given a high
and a low level, the hysteresis thresholding keeps the local maxima
with corresponding gradient norm greater than the high level or greater
than the low one and connected (in a 8-connexity sense) to a local
maxima whose norm is greater than the high level. The 8-connexity is
defined as

Definition 8 (8-connexity) A given point A is said to be connected to a
given point B if one of its eight neighbours is the point B or if one of its
eight neighbours is connected to the point B.

This thresholding technique gives better results than a simple one-
level thresholding operator, because it is able to extract some contour
points below the noise level. Figure 13 shows the contours obtained
after an hysteresis thresholding.

Figure 13 Contours extraction from figure 12.

(a) Local maxima. (b) Hysteresis tresh.
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12 Mathematical complement

12.1 Hilbert space and Riesz basis

Definition 9 (Abstract Hilbert space) A set of abstract elements which
possesses the three following properties is said to be a Hilbert space H,

1. H is a linear space i.e. the operations of addition and scalar mul-
tiplication are defined for its elements, in particular there exists an
element 0 such that 0 = 0:f for all element of H.

2. H is a metric space whose metric is derived from a scalar product,
denoted by < f; g >, so that < af; g >= a < f; g > for all scalar a,
< f + g; h >=< f; h > + < g; h >, < f; g >=< g; f >�, < f; f >> 0 for
f 6= 0 and < f; f >= 0 for f = 0. The norm of an element f is then
defined by kfk =< f; f >

1
2 .

3. H is a complete space i.e. if a sequence of elements ffng satisfies

lim
n;m!1

kfn - fmk = 0

then there exists an element f̃ such that limn;m!1 kfn - f̃k = 0.

The properties of these spaces are notably studied in [RSN55, KF61].

Definition 10 (Riesz basis) A family of element fekg of an abstract Hilbert
space H is said to be a Riesz basis of H if the following properties are
(simultaneously) satisfied for all x in H

1. 9f�kg=x =
P
k �kek.

2. 9A;B 2 R2+= 1
A
kxk2 �Pk j�kj

2 � 1
B
kxk2.

12.2 Hölder (Lipschitz) regularity

12.2.1 Definition

This subsection aims at defining the concept of Hölder exponant. We
use the presentation of [Mal98]. The idea is to start from the taylor
series of f at � (f is assumed to be N times differentiable on [�-h; �+h])

p�(x) =

N-1X
k=0

f(k)(�)

k!
(x- v)k + RN
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As shown in [Weiar]

RN = "(x) = f(x) - p�(x) =
(x- �)N

N!
f(N)(x)

and hence

8x 2 [�- h; �+ h]; j"(x)j � jx - �jN

N!
sup

y2[�-h;�+h]
jf(N)(y)j

The notion of Hölder regularity generalizes the previous inequality to
non integer exponents.

Definition 11 (Hölder regularity) A function is pointwise Hölder-� at
� if there exists K > 0 and a polynomial p� of degree N = b�c22 such that

8x 2 R; jf(x) - p�(x)j � Kjx- �j� (39)

A function is uniformly Hölder-� over an interval [a; b] if it satisfies the
previous equation 8� 2 [a; b] with a constant K that does not depend on
�. The Hölder regularity of f at � over [a; b] is the sup of the � such that
f is Hölder-�.

12.2.2 A few remarks

If f is uniformly Hölder-� (� > N) in the neighbourhood of � then f

is N times continuously differentiable in the neighbourhood of �. If
0 � � < 1 then p�(x) = f(�) and equation (39) becomes

8x 2 R; jf(x) - f(�)j � Kjx - �j�

If � < 1, f is not differentiable in the neighbourhood of � and the Hölder
exponent characterizes the type of singularity. For example [Dau92,
MZ92] Heaviside-like singularities are Hölder-0 while Dirac-like ones
are Hölder-(-1). Note that the uniform Hölder regularity of f over R
is related to a condition on the decay of its Fourier transform via the
following theorem (proofs in [Mal98, Dau92]).

Theorem 10 A function f is bounded and uniformly Hölder-� over R ifZ+1
-1

jf̂(�)j(1+ j�j�)d� <1
22b�c denotes the largest integer such that N � �.
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12.3 Spaces: W�, B�p;q, C
�

The purpose of this section is obviously not to provide a deep analysis
of the notions of Sobolev (W�), Besov (B�p;q) and Hölder (C�) spaces (the
notations are taken from [PB, Mey90]) spaces and their relationships
with orthogonal wavelet decompositions (for that purpose the reader is
directly sent to Yves Meyer’s book [Mey90]). Our goal is just to (very)
briefly introduce this subject.

12.3.1 Short presentation

Besov spaces are subsets of Lp(R). They are extensions of Sobolev and
Hölder spaces in which the smoothness of a given function is finer
characterized. Basically, the fact that a function lies in W � or C� gives
an idea of its global smoothness, while its membership of B�p;q gives
some information about its local smoothness, e.g. piecewise regular
functions belong to Besov spaces [Mal98].
The classical definition of Besov spaces in based on the modulus of
smoothness [Zyg68]

!p(f;h) = k�-hf- fkLp(R)
and on the two following semi-norms [Del93, PB, DL92] (1 � p; q <1)

� 0 < � < 1:
N�p;q(f) =

�Z+1
0

�
!p(f;h)

h�

�q
dh

h

� 1
q

� � = 1:

N1p;q(f) =

�Z+1
0

�
!?

p(f;h)

h

�q
dh

h

� 1
q

where!?

p(f;h) = k�-hf-2f+�hfkLp(R). If q =1, N�p;1(f) = sup
R+�!p(f;h)=h

�

with the modification for � = 1. We then need (again for 0 < � � 1)
kfkB�

p;b
= kfkLp(R) +N�p;q(f)

for completing the definition of a Besov space.

Definition 12 (Besov space) A function f 2 Lp(R) belongs to the Besov
space B�p;q if

� 0 < � � 1: kfkB�p;q <1.

� � > 1: kf(k)k
B
�-b�c
p;q

<1; 0 � k � b�c23

23The associated norm (for � > 1) becomes kfkB�p;q =
Pb�c

k=0 kf
(k)k

B
�-b�c
p;q

.
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Provided k:kB�p;q, a Besov space has a Banach space24 structure [PB].
Note that B�

1;1 = C� (ff 2 L1(R)= sup
R�+!1(f;h)=h

� < 1g [Dau92])
and that B�2;2 = W� (ff 2 L2(R)=kf(�)kL2(R) = 1

2�
k(i�)�f̂kL2(R) < 1g, f(�)

denotes the weak or Sobolev deritative of f, � is not necessarily an in-
teger [Mal98]) (notably) [PB, Mey90, Tri78].
Orthogonal wavelet basis have interesting properties for analysing these
classes of function. As demonstrated by Yves Meyer [Mey90], the norm
k:kB�p;q is equivalent to a norm on the wavelet coefficients if the mul-
tiresolution analysis generated by the scaling function/wavelet pair is
r-regularly (in Meyer’s sense) with r � � i.e. [Mey90, PB, Del93, Don91]

kfkB�p;q � k�0klp(Z) +
 

+1X
j=0

2jq(�+
1
2
- 1
p
)kjkqlp(Z)

! 1
q

(40)

recall that �0;k =< f;�0;k > and that j;k =< f; j;k >, the symbol �
means that there exists two constants A and B such that the ratio of
the two sides is bounded bertween them. It is therefore easier to de-
termine if a given function f 2 Lp(R) belongs to B�p;q.
A very interesting result comes from the fact that an orthogonal wavelet
basis (obeying the regularity condition) provides an unconditionnal ba-
sis25 of B�p;q, see (again!) [Mey90]. This implies that orthogonal wavelet
basis are “optimal” (in some sense) for analysing and processing the
functions belonging to B�p;q e.g. simple (thresholding) operators, ap-
plied in the unconditionnal basis, work better for a whole class of
problems (namely: compression, estimation and recovery) than they
do in any other orthogonal basis (the mathematical details are avail-
able in [Don91]). This is (roughly) a consequence of the fact that a
function is charactized by a few “relevant” coefficients in the uncondi-
tionnal basis. For more details on these functionnal spaces (other def-
initions, extensions to n dimensions, other properties, . . . ) the reader
is sent to [DP88, FJ85, Tri78] and to almost every books about wavelet
analysis since this theory uses them for an increasing number of ap-
plications (most of these works—known to the author—have already
been cited in this subsection).

24Banach spaces generalize the notion of Hilbert space (definition 9): the norm is
not necessarly defined from a scalar product [RSN55].

25As defined in [Dau92]: a family of elements fekg of a Banach space B is a Schauder
basis of B if 8f 2 B; 9f�kg (unique) =f = limN!1

PN

k=1 �kek. Moreover, if
P

k �kek 2 B)P
k j�kjek 2 B the family fekg is said to be an unconditionnal basis of B. On a Hilbert

space, an unconditionnal basis is a Riesz basis.
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12.3.2 Example: l’algèbre des bosses

In order to give a more “intuitive” idea of the kind of functions that
belong to Besov spaces, this subsection is devoted to a (short) presen-
tation of B11;1 also known as l’algèbre des bosses gaussiennes (“bump
algebra” [DJ91]) introduced by Yves Meyer [Mey90]. In what follows,
g�;�(x) denotes the Gauss function

e
-
(x-�)2

2�2

such that g�;�(�) = 1 instead of the usual normalization (area equal
to 1). L’algèbre des bosses (B) is defined as the class of functions
(vanishing at infinity) which admit a (non-unique) decomposition of
the form

f(x) =

+1X
k=0

�kg�k;�k(x) (41)

satisfying
P
k j�kj < 1. Provided the norm kfkB = inf

P
k j�ij, such that

f�kgk2N satisfies equation (41), B is a Banach space. In an orthogonal
wavelet basis (generated by a sufficiently regular multiresolution anal-
ysis), the decomposition of a function f belonging to B must statisfy

+1X
j=-1

2
j

2kjkl1(Z) (42)

and vice versa (proof in [Mey90]). Note that equation (42) corresponds
to equation (40) with p = q = � = 1: this illustrates the fact that the
“bump algebra” is B11;1. The class B contains some functions which may
have considerable spatial hinomogeneity e.g. a function f 2 B can be
extremely spiky in one part of its domain and completly flat in another
location. This type of behavior could not be possible in a Hölder or
Sobolev space since it is required that a function is “equally” smooth
at every points on its domain [DJ91].
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